skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Ju"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Lithium metal (Li0) solid‐state batteries encounter implementation challenges due to dendrite formation, side reactions, and movement of the electrode–electrolyte interface in cycling. Notably, voids and cracks formed during battery fabrication/operation are hot spots for failure. Here, a self‐healing, flowable yet solid electrolyte composed of mobile ceramic crystals embedded in a reconfigurable polymer network is reported. This electrolyte can auto‐repair voids and cracks through a two‐step self‐healing process that occurs at a fast rate of 5.6 µm h−1. A dynamical phase diagram is generated, showing the material can switch between liquid and solid forms in response to external strain rates. The flowability of the electrolyte allows it to accommodate the electrode volume change during Li0stripping. Simultaneously, the electrolyte maintains a solid form with high tensile strength (0.28 MPa), facilitating the regulation of mossy Li0deposition. The chemistries and kinetics are studied by operando synchrotron X‐ray and in situ transmission electron microscopy (TEM). Solid‐state NMR reveals a dual‐phase ion conduction pathway and rapid Li+diffusion through the stable polymer‐ceramic interphase. This designed electrolyte exhibits extended cycling life in Li0–Li0cells, reaching 12 000 h at 0.2 mA cm−2and 5000 h at 0.5 mA cm−2. Furthermore, owing to its high critical current density of 9 mA cm−2, the Li0–LiNi0.8Mn0.1Co0.1O2(NMC811) full cell demonstrates stable cycling at 5 mA cm−2for 1100 cycles, retaining 88% of its capacity, even under near‐zero stack pressure conditions. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available November 28, 2025
  3. Abstract The highest ambient‐pressure Tc among binary compounds is 40 K (MgB2). Higher Tc is achieved in high‐pressure hydrides or multielement cuprates. Alternatively, are explored superconducting properties of binary, metastable sub‐oxides, that may emerge under extremely low oxygen partial pressure. The emphasis is on the rock‐salt structure, which is known to promote superconductivity, and exploring AlO, ScO, TiO, and NbO. Dynamic lattice stability is achieved by introducing metal and oxygen vacancies in the fashion of Nb1−xO1−x‐type structure (x = ¼). The electron‐phonon (e‐ph) coupling is remarkably large in Al1−xO1−xand Ti1−xO1−x(λ ≈ 2 at x = ¼), with Tc ≈ 35 K according to the Allen–Dynes equation. Significantly, the coupling strength is comparable to that in high‐pressure hydrides, yet, in contrast to hydrides and MgB2, the coupling is largely driven by low frequency phonons. Sc1−xO1−xand Nb1−xO1−xshow significantly smaller λ and Tc. Further, hydrogen intercalation to boost λ and Tc is investigated. Only Ti1−x(O1−xHx) and Nb1−x(O1−xHx) are dynamically stable upon intercalation, where H, respectively, decreases and increases Tc. The effect of H doping on electronic structure and Tc is discussed. Altogether, the study suggests that metal sub‐oxides are promising compounds to achieve strong e‐ph coupling at ambient pressure. 
    more » « less
  4. Cation lattice flexibility and covalent bond lengths serve as good physical descriptors of proton conduction in solid acids and enable the discovery of promising proton conductors beyond traditional chemistries. 
    more » « less
  5. Recent studies have reported the experimental discovery that nanoscale specimens of even a natural material, such as diamond, can be deformed elastically to as much as 10% tensile elastic strain at room temperature without the onset of permanent damage or fracture. Computational work combining ab initio calculations and machine learning (ML) algorithms has further demonstrated that the bandgap of diamond can be altered significantly purely by reversible elastic straining. These findings open up unprecedented possibilities for designing materials and devices with extreme physical properties and performance characteristics for a variety of technological applications. However, a general scientific framework to guide the design of engineering materials through such elastic strain engineering (ESE) has not yet been developed. By combining first-principles calculations with ML, we present here a general approach to map out the entire phonon stability boundary in six-dimensional strain space, which can guide the ESE of a material without phase transitions. We focus on ESE of vibrational properties, including harmonic phonon dispersions, nonlinear phonon scattering, and thermal conductivity. While the framework presented here can be applied to any material, we show as an example demonstration that the room-temperature lattice thermal conductivity of diamond can be increased by more than 100% or reduced by more than 95% purely by ESE, without triggering phonon instabilities. Such a framework opens the door for tailoring of thermal-barrier, thermoelectric, and electro-optical properties of materials and devices through the purposeful design of homogeneous or inhomogeneous strains. 
    more » « less
  6. The precise controllability of the Fermi level is a critical aspect of quantum materials. For topological Weyl semimetals, there is a pressing need to fine-tune the Fermi level to the Weyl nodes and unlock exotic electronic and optoelectronic effects associated with the divergent Berry curvature. However, in contrast to two-dimensional materials, where the Fermi level can be controlled through various techniques, the situation for bulk crystals beyond laborious chemical doping poses significant challenges. Here, we report the milli-electron-volt (meV) level ultra-fine-tuning of the Fermi level of bulk topological Weyl semimetal tantalum phosphide using accelerator-based high-energy hydrogen implantation and theory-driven planning. By calculating the desired carrier density and controlling the accelerator profiles, the Fermi level can be experimentally fine-tuned from 5 meV below, to 3.8 meV below, to 3.2 meV above the Weyl nodes. High-resolution transmission electron microscopy reveals the crystalline structure is largely maintained under irradiation, while electrical transport indicates that Weyl nodes are preserved and carrier mobility is also largely retained. Our work demonstrates the viability of this generic approach to tune the Fermi level in semimetal systems and could serve to achieve property fine-tuning for other bulk quantum materials with ultrahigh precision. 
    more » « less
  7. Abstract Programmable synaptic devices that can achieve timing‐dependent weight updates are key components to implementing energy‐efficient spiking neural networks (SNNs). Electrochemical ionic synapses (EIS) enable the programming of weight updates with very low energy consumption and low variability. Here, the strongly nonlinear kinetics of EIS, arising from nonlinear dynamics of ions and charge transfer reactions in solids, are leveraged to implement various forms of spike‐timing‐dependent plasticity (STDP). In particular, protons are used as the working ion. Different forms of the STDP function are deterministically predicted and emulated by a linear superposition of appropriately designed pre‐ and post‐synaptic neuron signals. Heterogeneous STDP is also demonstrated within the array to capture different learning rules in the same system. STDP timescales are controllable, ranging from milliseconds to nanoseconds. The STDP resulting from EIS has lower variability than other hardware STDP implementations, due to the deterministic and uniform insertion of charge in the tunable channel material. The results indicate that the ion and charge transfer dynamics in EIS can enable bio‐plausible synapses for SNN hardware with high energy efficiency, reliability, and throughput. 
    more » « less